PN-Junctions

MUHAMMAD HAFEEZ JAVED

rmhjaved@gmail.com

www.rmhjaved.com

Recall-Lecture 2

- Introduction to Electronics
- Atomic structure of Group IV materials particularly on Silicon
- Intrinsic carrier concentration, n_i

$$n_i = BT^{3/2} e^{\left(\frac{-E_g}{2kT}\right)}$$

Recall-Lecture 2

- Extrinsic semiconductor
 - N-type doped with materials from Group V
 - Majority carriers = electron
 - P-type doped with materials from Group III
 - Majority carriers = holes

Drift and Diffusion Currents

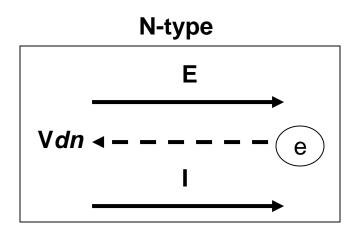
• Current

Generated by the movement of charged particles (negatively charged electrons and positively charged holes).

• Carriers

The charged electrons and holes are referred to as carriers

- The two basic processes which cause electrons and holes move in a semiconductor:
 - Drift the movement caused by electric field.
 - Diffusion the flow caused by variations in the concentration.

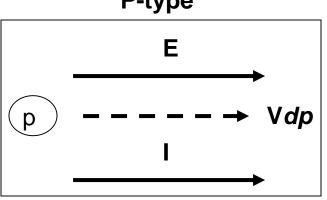


Drift Currents

• **Drift Current Density** (n-type semiconductor)

An electric field E applied to n-type semiconductor with a large number of free electrons.

Produces a force on the electrons in the opposite direction, because of the electrons' negative charge.
The electrons acquire a drift velocity, V_{dn} (in cm/s):



Drift Currents

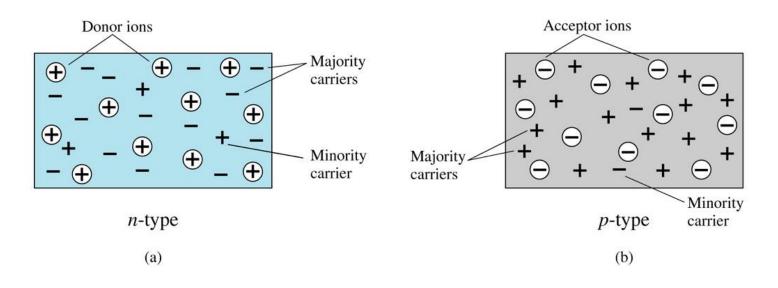
Drift Current Density (p-type semiconductor)

- An electric field *E* applied to p-type semiconductor with a large number of holes.
 - Produces a force on the holes in the same direction, because of the positive charge on the holes.
 - The holes acquire a drift velocity, V_{dp}(in cm/s): ٠

Diffusion Current

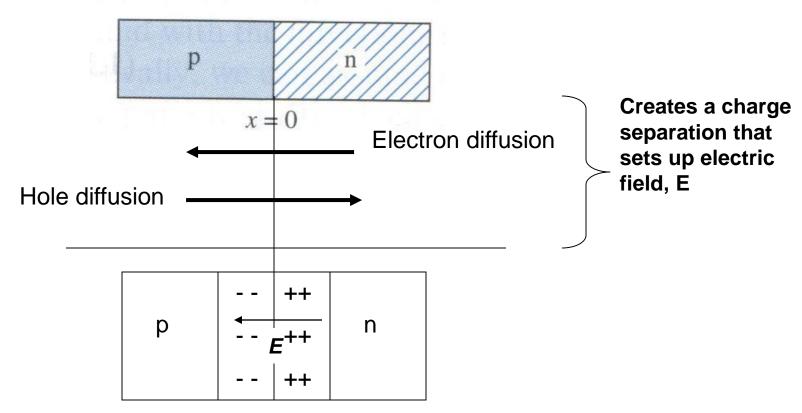
The basic diffusion process

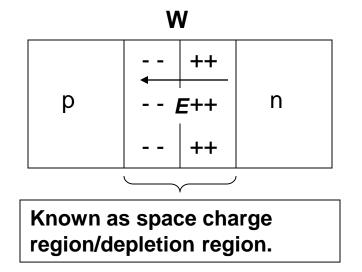
- Flow of particles from a region of high-concentration to a region of low-concentration.
- The movement of the particles will then generate the diffusion current



The pn Junction

n-type versus p-type


- In n-type the electrons are the majority carriers and holes are the minority carriers.
- In p-type the holes are called the majority carriers and electrons are the minority carriers.


The Equilibrium pn Junction

• Join n-type and p-type doped Silicon (or Germanium) to form a **p-n junction**.

The Electric field will create a force that will stop the diffusion of carriers \rightarrow reaches thermal equilibrium condition

Potential difference across the depletion region is called the <u>built-in potential</u> barrier, or built-in voltage:

$$V_{bi} = \frac{kT}{e} \ln\left(\frac{N_a N_d}{n_i^2}\right) = V_T \ln\left(\frac{N_a N_d}{n_i^2}\right)$$

 $V_T = kT/e$

k = Boltzmann's constant

T = absolute temperature

e = the magnitude of the electronic charge = 1 eV

 N_a = the net acceptor concentration in the p-region

 N_d = the net donor concentration in the n-region

 V_T = thermal voltage, $[V_T = kT / e]$ it is approximately 0.026 V at temp, T = 300 K

The Equilibrium pn Junction

Example 1

Calculate the built-in potential barrier of a pn junction. Consider a silicon pn junction at T = 300 K, doped $N_a = 10^{16}$ cm⁻³ in the p-region, $N_d = 10^{17}$ cm⁻³ in the n-region and $n_i = 1.5 \times 10^{10}$ cm⁻³.

Solution

$$V_{bi} = V_T \ln\left(\frac{N_a N_d}{n_i^2}\right) = (0.026) \ln\left[\frac{(10^{16})(10^{17})}{(1.5 \times 10^{10})^2}\right] = 0.757 \,\mathrm{V}$$

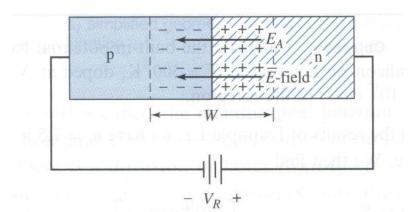
$$V_{bi} = \frac{kT}{e} \ln\left(\frac{N_a N_d}{n_i^2}\right) = V_T \ln\left(\frac{N_a N_d}{n_i^2}\right)$$

• Example 2

Consider a silicon pn junction at T = 400K, doped with concentrations of $N_d = 10^{18}$ cm⁻³ in n-region and $N_a = 10^{19}$ cm⁻³ in p-region. Calculate the built-in voltage V_{bi} of the pn junction, given Given B and Eg for silicon are 5.23 x 10¹⁵ cm⁻³ K^{-3/2} and 1.1 eV respectively

ANSWER

• Calculation of V_T = kT / e = 86 x 10⁻⁶ (400) / 1eV = 0.0344 V


• Calculation of
$$n_i = BT^{3/2} \exp(-Eg/2kT)$$

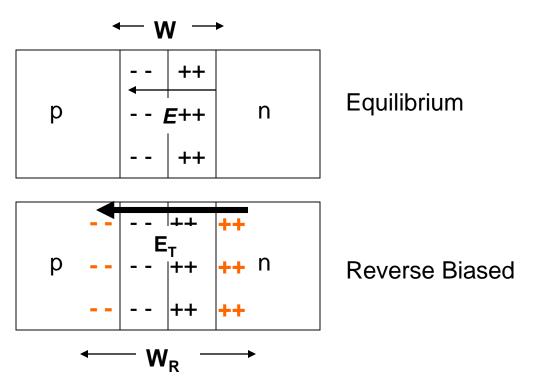
= 5.23 x 10¹⁵ (400) ^{3/2} exp -1.1 / 2 (86 x 10⁻⁶) (400)
= 4.76 x 10¹² cm ⁻³

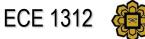
• Calculation of
$$V_{bi} = V_T \ln (N_a N_d / (n_i^2))$$

= 0.0344 ln 10¹⁸ (10¹⁹) / (4.76 x 10¹²)²
= 0.922V

Reverse-Biased pn Junction

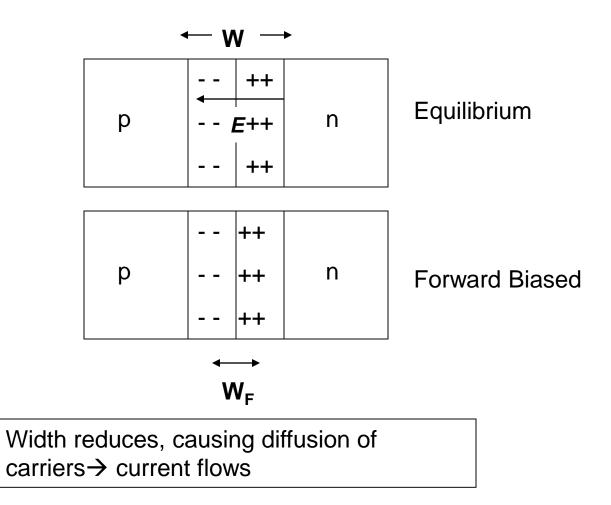
- +ve terminal is applied to the n-region of the pn junction and vice versa.
- > Applied voltage V_R will induce an applied electric field E_A .
- > Direction of the E_A is the same as that of the *E*-field in the spacecharge region.
- Magnitude of the electric field in the space-charge region increases above the thermal equilibrium value. Total $E_T = E + E_A$
- Increased electric field holds back the holes in the p-region and the electrons in the n-region.





Reverse-Biased pn Junction

- Hence, no current across the pn junction.
- This applied voltage polarity is called **reverse bias**.
- E ∝ charge so, since there is an increase of the electric field in the depletion region, the number of charges increases too since the width of the depletion increases.



Forward-Biased pn Junction

- +ve terminal is applied to the p-region of the pn junction and vice versa.
- > Direction of the applied electric field E_A is the opposite as that of the *E*-field in the space-charge region.
- The net result is that the electric field in the space-charge region lower than the thermal equilibrium value causing diffusion of charges to begin again.
- > The diffusion process continues as long as V_D is applied.
- Creating current in the pn junction, i_D .

Forward-Biased pn Junction

Ideal Current-Voltage Relationship

So, the current i_D is

$$i_{D} = I_{S} \left[e^{\left(\frac{v_{D}}{nV_{T}} \right)} - 1 \right]$$

 $I_{\rm S}$ = the reverse-bias saturation current (for silicon 10⁻¹⁵ to 10⁻¹³ A) V_T = the thermal voltage (0.026 V at room temperature) n = the emission coefficient (1 ≤ n ≤ 2)

Ideal Current-Voltage Relationship

Example

Determine the current in a pn junction diode. Consider a pn junction at T = 300 K in which $I_S = 10^{-14}$ A and n = 1. Find the diode current for $v_D = +0.70$ V and $v_D = -0.70$ V.

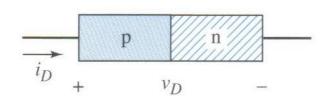
Solution: For $v_D = +0.70$ V, the pn junction is forward-biased and we find

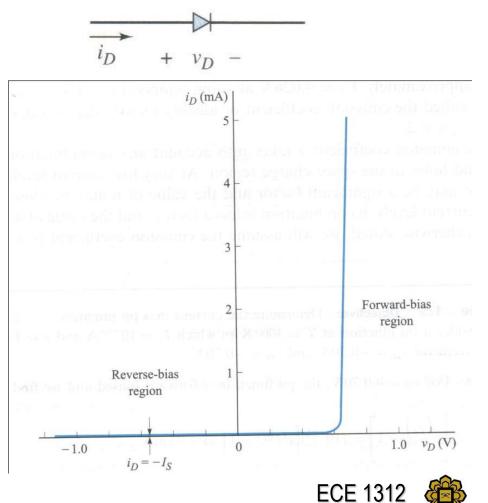
$$i_D = I_S \left[e^{\left(\frac{v_D}{V_T}\right)} - 1 \right] = (10^{-14}) \left[e^{\left(\frac{+0.70}{0.026}\right)} - 1 \right] \Rightarrow 4.93 \,\mathrm{mA}$$

For $v_D = -0.70$ V, the pn junction is reverse-biased and we find

$$i_D = I_S \left[e^{\left(\frac{v_D}{V_T}\right)} - 1 \right] = (10^{-14}) \left[e^{\left(\frac{-0.70}{0.026}\right)} - 1 \right] \cong -10^{-14} \,\mathrm{A}$$
 Very small current

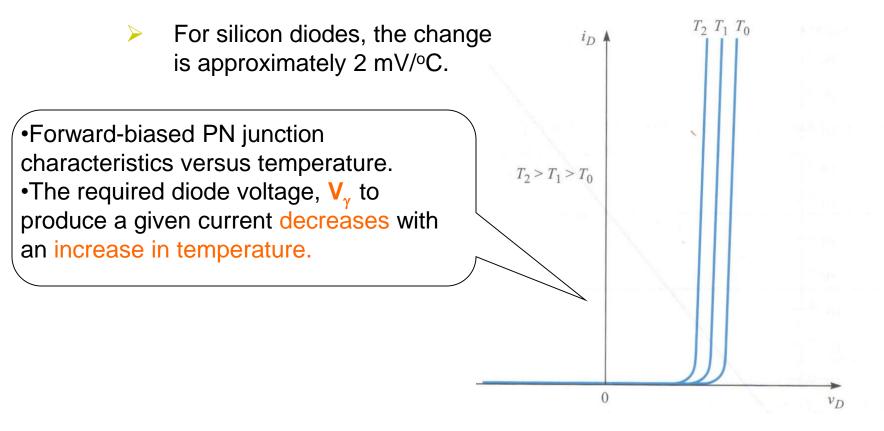
• Example 2


- A silicon pn junction diode at T=300K has a reverse biased current of $I_s = 10^{-14}$ A. Determine the forward biased current for
- i. V_D = 0.5V
- ii. V_D = 0.6V
- iii. V_D = 0.7V



PN Junction Diode

The basic PN junction diode circuit symbol, and conventional current direction and voltage polarity.



- The graphs shows the ideal I-V characteristics of a PN junction diode.
- The diode current is an exponential function of diode voltage in the forward-bias region.
- The current is very nearly zero in the reverse-bias region.

PN Junction Diode

- Temperature Effects
 - Both I_{S} and V_{T} are functions of temperature.
 - > The diode characteristics vary with temperature.

